
Game Engine Programming

GMT Master Program
Utrecht University

Dr. Nicolas Pronost

Course code: INFOMGEP
Credits: 7.5 ECTS

Lecture #3

Advanced OO, STL, compilation and
programming

• Allows to create classes which are derived

from other classes

– automatically include some of its parent's

members (plus its own)

– access specifier (public, protected and private)

represents the most accessible level for the

members inherited

3

Inheritance

class derived_class: access_specifier base_class {

 // class declaration

};

• Example

4

Inheritance

Player

int strength, intellect

Priest

Warrior

• Class Player

5

Inheritance

class Player { Player.h

 protected:

 int strength, intellect;

 public:

 int level;

 void setAttributes(const int, const int);

};

 Player.cpp

Player::setAttributes(const int newStrength, const int newIntellect) {

 strength = newStrength;

 intellect = newIntellect;

};

• Class Priest

6

Inheritance

class Priest: public Player { Priest.h

 public:

 int castSpell () const;

 int meleeAttack () const;

};

 Priest.cpp

int Priest::castSpell() const {

 return (intellect * level);

};

int Priest::meleeAttack() const {

 if (level > 10) return (strength * level);

 else return 1;

};

• Class Warrior

7

Inheritance

class Warrior: public Player { Warrior.h

 public:

 int castSpell () const;

 int meleeAttack () const;

};

 Warrior.cpp

int Warrior::castSpell() const {

 if (level > 10) return (intellect * level);

 else return 1;

};

int Warrior::meleeAttack() const {

 return (strength * level);

};

• Main program

8

Inheritance

 Main.cpp

int main () {

 Priest player1;

 Warrior player2;

 player1.level = 4;

 player2.level = 11;

 player1.setAttributes(2,20);

 player2.setAttributes(40,12);

 cout << player1.castSpell() << “ ” << player1.meleeAttack() << endl;

 cout << player2.castSpell() << “ ” << player2.meleeAttack() << endl;

 return 0;

};

• What is inherited from the base class?

– everything except constructor, destructor,

operator= and friends

• Calling the base constructor from the

derived class

– syntax

9

Inheritance

derived_constructor (parameters) :

base_constr(parameters) {

 // body of derived class constructor

}

• Class Player

10

Inheritance

class Player { Player.h

 protected:

 int level;

 public:

 Player ();

 Player (int);

};

 Player.cpp

Player::Player() {

 level = 0;

 cout << “Player newbie! ”;

};

Player::Player(int newLevel) {

 level = newLevel;

 cout << “Player created with level ” << level << “. ”;

};

• Class Priest

11

Inheritance

class Priest : public Player { Priest.h

 public:

 Priest (int);

};

 Priest.cpp

Priest::Priest(int newLevel) {

 cout << “Priest (lvl ” << level << “)” << endl;

};

• Class Warrior

12

Inheritance

 Warrior.cpp

Warrior::Warrior(int newLevel) : Player (newLevel) {

 cout << “Warrior (lvl ” << level << “)” << endl;

};

class Warrior : public Player { Warrior.h

 public:

 Warrior(int);

};

• Main program

• Output

• Because

13

Inheritance

 Main.cpp

int main () {

 Priest player1 (3);

 Warrior player2 (5);

 return 0;

};

Player newbie! Priest (lvl 0)

Player created with level 5. Warrior (lvl 5)

Priest(int newLevel) // nothing specified: calls default parent

Warrior(int newLevel) : Player (newLevel) // calls specific constructor

• Imagine we want

• We should add castSpell() function to Player

• But Priest and Warrior classes use different

implementations of the castSpell() function

– Virtual members

14

Virtual members

int main () {

 Player * player1 = createRandomPlayer(); // Priest or Warrior

 Player * player2 = createRandomPlayer();

 cout << “Damage done by player1 : ” << player1->castSpell() << endl;

 cout << “Damage done by player2 : ” << player2->castSpell() << endl;

 return 0;

};

• Class Player

15

Virtual members

class Player { Player.h

 protected:

 int strength, intellect;

 public:

 int level;

 void setAttributes(const int, const int);

 virtual int castSpell() const;

 virtual int meleeAttack() const;

};

 Player.cpp

int Player::castSpell() const {

 return 0;

};

int Player::meleeAttack() const {

 return 0;

};

• Main program

16

Virtual members

 Main.cpp

int main () {

 Player * player1 = new Priest();

 Player * player2 = new Warrior();

 Player * player3 = new Player();

 player1->level = 1;

 player2->level = 1;

 player3->level = 1;

 player1->setAttributes(10,20);

 player2->setAttributes(10,20);

 player3->setAttributes(10,20);

 cout << player1->castSpell() << endl;

 cout << player2->castSpell() << endl;

 cout << player3->castSpell() << endl;

 delete player1; delete player2; delete player3;

 return 0;

};

• Resulting output

• If castSpell() was not declared virtual

– because they are created as Player instances

• The effect of automatically calling the method
from the derived class is called polymorphism

• If a function could be overridden, it should be
declared as virtual
– induce a small performance overhead (lookup table)

17

Virtual members

20

1

0

0

0

0

• In abstract base classes virtual member
functions do not need implementation at all

– by appending = 0 (equal zero) to the declaration

– called pure virtual function

• A class containing at least one pure virtual
function is called abstract base class

– instances of an abstract base class are impossible

– but pointers to it can be created

– and pure virtual functions can be called from the
abstract base class

18

Abstract base classes

virtual int castSpell() const = 0;

virtual int meleeAttack () const = 0;

19

Abstract base classes
class Player { Player.h

 protected:

 int strength, intellect;

 public:

 int level;

 void setAttributes(const int, const int);

 virtual int castSpell() const = 0;

 virtual int meleeAttack () const = 0;

 int bestAttack() { return max(this->castSpell(),this->meleeAttack()); }

};

 Main.cpp

int main () {

 Player * player1 = new Priest(); // Player player1; forbidden

 Player * player2 = new Warrior(); // Player * player2 = new Player(); forbidden

 player1->level = 1; player2->level = 1;

 player1->setAttributes(10,20); player2->setAttributes(10,20);

 cout << player1->bestAttack() << “ ” << player2->bestAttack() << endl;

 delete player1; delete player2;

 return 0;

};

• C++ allows a class to inherit members from
more than one class
– by simply separating the different base class names

with commas in the derived class declaration

• Multiple inheritance is often used to inherit from
multiple abstract base classes

• But there are some problems
– Ambiguity

– Topography

– and more

20

Multiple inheritance

class derivedClass :

 access_specifier baseClass1,

 access_specifier baseClass2, ... {

 ...

};

• Problem 1: ambiguity

– base classes having the same member

– solution by prefixing the class name

• in derived class

• outside derived class (required to know the parents)

21

Multiple inheritance

...

if (derivedClass->CommonMember()) { // Compiler error!

...

...

if (baseClass1::CommonMember()) {

...

...

if (instance.baseClass1::CommonMember()) {

...

• Problem 2: topography

– Diamond of Death (DoD)

– Content of baseClass

appears twice in

subSubClass

22

Multiple inheritance
baseClass

subClass1

subClass2

subSubClass

• Problem 2: topography

– Ambiguity issues

• Using members of baseClass

• Creating baseClass * b = new subSubClass()

– Solutions

• Inheritance path and intermediate cast everywhere

(see problem 1)

• Virtual inheritance (space and performance cost)

– class subClass1 : public virtual baseClass

– class subClass2 : public virtual baseClass

23

Multiple inheritance

• Implicit and explicit conversion

• Careful with conversion between pointers

– No compiler error but wrong memory state

24

Type casting

int lvlInt = 1;

float lvlFloat1 = lvlInt; // implicit conversion, compiler warning

float lvlFloat2 = (float) lvlInt; // explicit conversion (c-like)

float lvlFloat3 = float (lvlInt); // another explicit syntax (functional)

Team t;

Player * ptrPlayer;

ptrPlayer = (Player*) &t;

cout << ptrPlayer->level; // read data member level on Team memory space

• C++ has four specific casting operators

– dynamic_cast

– reinterpret_cast

– static_cast

– const_cast

• Syntax is

• Example

25

Type casting

cast_type <data_type> (expression);

dynamic_cast <float *> (positionX);

• dynamic_cast

– used only with pointers and references

– checks the compatibility at run-time

– ensures that the result of the type conversion is a valid complete

object of the requested class

– always successful when casting a class to one of its base classes

– result

• success: returns a new pointer or reference

• fail: returns NULL or throws bad_cast exception

26

Type casting

class CBase { };

class CDerived: public CBase { };

CBase b; CBase* pb;

CDerived d; CDerived* pd;

pb = dynamic_cast<CBase*>(&d); // OK: derived-to-base

pd = dynamic_cast<CDerived*>(&b); // wrong: base-to-derived

• static_cast

– conversions between pointers to related classes

• from the derived class to one of its bases

• from a base class to one of its derived classes

– no safety check is performed during runtime to check if

the object being converted is in fact a full object of the

destination type

• the overhead of the type-safety checks of dynamic cast is

avoided

27

Type casting

class CBase {};

class CDerived: public CBase {};

CBase * a = new CBase;

CDerived * b = static_cast<CDerived*>(a);

// valid, but b points to an incomplete object of the class and

// could lead to runtime errors

• reinterpret_cast

– converts any pointer type to any other pointer type, even

of unrelated classes

• binary copy of the value from one pointer to the other

• neither the content pointed nor the pointer type itself is checked

• Use sparingly and only when other types of

casts are not enough

28

Type casting

class A {};

class B {};

A * a = new A;

B * b = reinterpret_cast<B*>(a);

// valid but pointless as B points to an object of an

// incompatible class

• const_cast

– to manipulate the constness of an object

• to set and to remove

– only use if absolutely necessary

– if you need it, you probably have to rethink the

design of your class

29

Type casting

const char * c = "text to print";

printAString(const_cast<char *>(c));

// Does printAString really need a non-const object?

• C++ allows to check the type of an

expression with the typeid operator

– returns a reference to a constant object of

type type_info

• can be compared with another one

• can serve to obtain the data type or class name

30

typeid operator

typeid (expression);

#include <typeinfo>

...

Player * player1 = new Warrior();

Player * player2 = new Player();

cout << “player1 is: ” << typeid(player1).name(); // Player *

cout << “*player1 is: ” << typeid(*player1).name(); // Warrior

cout << “*player2 is: ” << typeid(*player2).name(); // Player

• Operators (+,&,--,<<,...) manipulating objects

can also be changed (not the primitive type)

• Same as regular function using the syntax

• Example

31

Operator overload

type operator operator_symbol (parameters) {

...

}

class Player {

 public:

 int level;

 bool operator > (const Player& player) const {

 return (level > player.level);

 }

 friend ostream& operator << (ostream& os, const Player& player);

}

• “Standard Template Library”

– containers, iterators and algorithms

– implemented as class template (more later)

• The container manages the storage space for
its elements and provides member functions to
access them, either directly or through iterators

– Improved array implementation for C++

– Automatic memory management when adding and
deleting elements

• The algorithms library is a collection of
functions especially designed to be used on
ranges of elements

32

STL

• Part of the ANSI/ISO C++ since 1994

– everything inside “std” namespace

– provides useful data structures and algorithms

– easy integration to your classes (templates)

– robust, optimized, stable and widely used

33

STL

• Mainly two types of containers

– Sequence containers: elements are stored in a
specific order

– Associative containers: order of elements is not
preserved

• Iterators allow to access the different elements

– begin() returns the iterator to the first element

– end() returns the iterator past the last element

• STL contains a set of standard algorithms that
can be applied to containers and iterators

– Finding elements, copying, reversing, sorting, etc.

34

STL

35

source: cplusplus.com

• Most commonly used container

• Random element access

• Insertion and deletion

– efficient at the end, less otherwise

– element can be added/deleted everywhere

• Always better than C arrays

36

STL vector

37

STL vector

#include <vector>

int main() {

 std::vector<int> PlayerPerTeam;

 std::vector<float> AverageKillsPerPlayer;

 PlayerPerTeam.push_back(2);

PlayerPerTeam.push_back(1);

 AverageKillsPerPlayer.push_back(10.3);

 AverageKillsPerPlayer.push_back(8.4);

 AverageKillsPerPlayer.push_back(15.9);

 std::cout << “Game has ” << PlayerPerTeam.size() << “ team(s).” << endl;

 std::cout << “Team 1 has ” << PlayerPerTeam[0] << “ player(s).” << endl;

 std::cout << “Player 3 has ” << AverageKillsPerPlayer[2] << “ AK.” << endl;

 PlayerPerTeam.clear();

 AverageKillsPerPlayer.clear();

 return 0;

}

• Double-ended queue

• Fast insertion/deletion at the beginning as

well as the end of the sequence

• Use several memory blocks

• Useful for FIFO-like structures (buffers)

• Do not use in small memory reserve and

expensive memory usage programs

38

STL deque

• No random access to elements

• Double-linked list of elements (each element

has two pointers, one for each neighbor)

– No penalty for inserting/deleting in the middle

– Costly to transverse the list (no contiguous in

memory)

– Algorithms efficient as no copy (pointer update)

• Use when you need to apply algorithms and

add/delete operations on all elements

39

STL list

• Mathematical set

– not ordered elements

– no duplicate in set, allowed in multiset

– operator < between elements should be defined

• Implemented as binary search tree

– cost of 𝑂(ln 𝑛) for search and comparison

– useful only for large structures to keep track of

processing

40

STL set/multiset

• Key-based set (instead of value)

– can be seen as array with index as object

– provides the direct access [] operator (𝑂(ln 𝑛))

• Useful for non index-based look-up table or

dictionary

• Create default element if access out of

boundary

• Same implementation and performance as

set

41

STL map/multimap

• Several types of iterators

– const and non-const

– forward, bidirectional and direct access

• Iterators have operators (==, != ,++, ...)

• Accessing the elements with * operator

42

STL iterator

vector<string> PlayerNames;

PlayerNames.push_back(“John”); ...

vector<string>::iterator it;

for (it = PlayerNames.begin(); it != PlayerNames.end(); ++it) {

 cout << “Player name : ” << *it << endl;

}

• Preprocessor

– Evaluate macros and includes

• Compiler

– Create object files (.obj) from C++ code (h+cpp)

• Linker

– Resolve the links between different parts of

code, for example include libraries

– Create

• executable (.exe on Windows) if main program

• library (.dll/.lib on Windows) otherwise

43

Building the code

• Preprocessor directives

– lines included in the code that are not program
statements but directives for the preprocessor

– preceded by a hash sign (#)

– executed before the compilation of code begins

• C++ has several types of directives

– Macro definitions (#define, #undef)

– Conditional inclusions (#ifdef, #ifndef, #if, #endif, #else, #elif)

– Error directive (#error)

– Source file inclusion (#include)

– and more...

44

Preprocessor

• Tells the preprocessor to do a text replace in

the code

– useful for constants used everywhere

– useful for context-independent short functions

• Two special operators (# and ##)

– the operator # replaces a parameter by a string

– the operator ## concatenates two parameters

45

Preprocessor: macro

#define identifier replacement

...

#undef identifier

#define max(x,y) x>y?x:y

• Allows to include or discard part of the code

of a program if a condition is met

– To use at the beginning of a class declaration to

prevent multiple loading

– Useful to write platform independent and

modular programs

46

Preprocessor: condition

#ifndef CLASSNAME_H_

#define CLASSNAME_H_

class className {

...

};

#endif

• Aborts the compilation process when it is

found

– generates a compilation error that can be

specified as its parameter

– useful to raise problems during checking

environment, compatibility...

47

Preprocessor: error

#ifndef __cplusplus

#error A C++ compiler is required!

#endif

• Replaces the directive by the entire content

of the specified file

48

Preprocessor: inclusion

#include “localfile”

 // 1st search in working directory then standard header directory

#include <standard_library>

 // search directly in standard header directory

 // platform / environment dependent

• Organizing the code

– use a directory structure to group related

classes

49

Programming in C++

#include <iostream>

#include <string>

#include “GameEngine/Graphics/Renderer.h”

#include “GameEngine/Graphics/3DObject.h”

#include “GameEngine/Network/SendData.h”

#include “Character/Team.h”

#include “Character/Player.h”

#include “Character/AI/PathPlanning.h”

#include “Character/AI/GroupBehavior.h”

• namespace

– allows to group entities like classes, objects and

functions under a name

• When developing a toolkit / library, use a

single namespace for all classes

– Usage:

• Only put using statements in definitions

(.cpp) and not in headers (.h)

50

Programming in C++

namespace identifier {

 entities

}

using namespace identifier;

• Comments

– serve to clarify code and provide additional

information to users

• Provide comments for

– class descriptions

– all constructors/methods and the destructor

– all functions with parameters, in/out and return

values

– description of class attributes

51

Programming in C++

• Hungarian notation

– Invented by Charles Simonyi from Microsoft

– Helps as a reminder of the type in the name

– Extended to include scope information

– Example: static std::string * s_pName;

52

Programming in C++

scope prefix description

m_ class member variable

s_ class static variable

g_ global variable

type prefix description

b boolean variable

i integer variable

f float variable

p pointer variable

• Use const instead of #define

– type safe compiler

– available in the debugger

• Useful for non modifiable function

– control over updating methods

– const function cannot call non-const

functions

– the mutable keyword on data member

• to allow data member modification from a const

function

53

Remarks about const

• Commonly used in function parameters, but

also as returned object

– no local copy

• References vs. Pointers

– more control as never NULL and fixed owner

– but impossible to change ownership and object

pointed

– NULL can be useful

– no arithmetic in references

54

Remarks about references

• Give explicit member name (not a, b, hfyw)

• Indent the code to indentify the scopes

• Create functions instead of copy/paste

• Use inheritance and containment

• Make the class as simple as possible

• Double check destruction of heap variables

• Make the program working, then optimize

55

More tips

End of lecture #3

Next lecture

Game engine architecture

